A mathematical model of the Calvin photosynthesis cycle.

نویسندگان

  • G Pettersson
  • U Ryde-Pettersson
چکیده

1. A mathematical model is presented for photosynthetic carbohydrate formation in C3 plants under conditions of light and carbon dioxide saturation. The model considers reactions of the Calvin cycle with triose phosphate export and starch production as main output processes, and treats concentrations of NADPH, NAD+, CO2, and H+ as fixed parameters of the system. Using equilibrium approximations for all reaction steps close to equilibrium steady-state and transient-state relationships are derived which may be used for calculation of reaction fluxes and concentrations of the 13 carbohydrate cycle intermediates, glucose 6-phosphate, glucose 1-phosphate, ATP, ADP, and inorganic (ortho)phosphate. 2. Predictions of the model were examined with the assumption that photosynthate export from the chloroplast occurs to a medium containing orthophosphate as the only exchangeable metabolite. The results indicate that the Calvin cycle may operate in a single dynamically stable steady state when the external concentration of orthophosphate does not exceed 1.9 mM. At higher concentrations of the external metabolite, the reaction system exhibits overload breakdown; the excessive rate of photosynthate export deprives the system of cycle intermediates such that the cycle activity progressively approaches zero. 3. Reactant concentrations calculated for the stable steady state that may obtain are in satisfactory agreement with those observed experimentally, and the model accounts with surprising accuracy for experimentally observed effects of external orthophosphate on the steady-state cycle activity and rate of starch production. 4. Control analyses are reported which show that most of the non-equilibrium enzymes in the system have a strong regulatory influence on the steady-state level of all of the cycle intermediates. Substrate concentration control coefficients for cycle enzymes may be positive, such that an increase in activity of an enzyme may raise the steady-state concentration of the substrate is consumes. 5. Under optimal external conditions (0.15-0.5 mM orthophosphate), reaction flux in the Calvin cycle is controlled mainly by ATP synthetase and sedoheptulose bisphosphatase; the cycle activity approaches the maximum velocity that can be supported by the latter enzyme. At lower concentrations of external orthophosphate the cycle activity is controlled almost exclusively by the phosphate translocator.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Model of the Calvin Cycle Has Only One Physiologically Feasible Steady State under the Same External Conditions

Most current photosynthesis research implicitly assumes that the photosynthetic process occurs only at one steady state. However, since the rate of each reaction in photosynthesis depends nonlinearly on its substrates and products, in theory, photosynthesis can have multiple steady states under given external conditions (i.e., in a given environment). The number of steady states of photosynthes...

متن کامل

A Calvin bestiary

This paper compares a number of mathematical models for the Calvin cycle of photosynthesis and presents theorems on the existence and stability of steady states of these models. Results on five-variable models in the literature are surveyed. Next a number of larger models related to one introduced by Pettersson and Ryde-Pettersson are discussed. The mathematical nature of this model is clarifie...

متن کامل

A rapid-equilibrium model for the control of the Calvin photosynthesis cycle by cytosolic orthophosphate.

1. A simple model based on rapid-equilibrium assumptions is derived which relates the steady-state activity of the Calvin cycle for photosynthetic carbohydrate formation in C3 plants to the kinetic properties of a single cycle enzyme (fructose bisphosphatase) and of the phosphate translocator which accounts for the export of photosynthate from the chloroplast. Depending on the kinetic interplay...

متن کامل

Homeostasis of adenylate status during photosynthesis in a fluctuating environment.

This review describes and assesses pathways likely to influence and stabilize the ATP/reductant balance during whole cell photosynthesis. The sole reductive step of the Calvin cycle occurs during the conversion of 3-phosphoglycerate to triose phosphate. Photophosphorylation linked to this reaction can undoubtedly supply most of the ATP required by the Calvin cycle and other chloroplastic reacti...

متن کامل

The Calvin Cycle Inevitably Produces Sugar-Derived Reactive Carbonyl Methylglyoxal During Photosynthesis: A Potential Cause of Plant Diabetes

Sugar-derived reactive carbonyls (RCs), including methylglyoxal (MG), are aggressive by-products of oxidative stress known to impair the functions of multiple proteins. These advanced glycation end-products accumulate in patients with diabetes mellitus and cause major complications, including arteriosclerosis and cardiac insufficiency. In the glycolytic pathway, the equilibration reactions betw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • European journal of biochemistry

دوره 175 3  شماره 

صفحات  -

تاریخ انتشار 1988